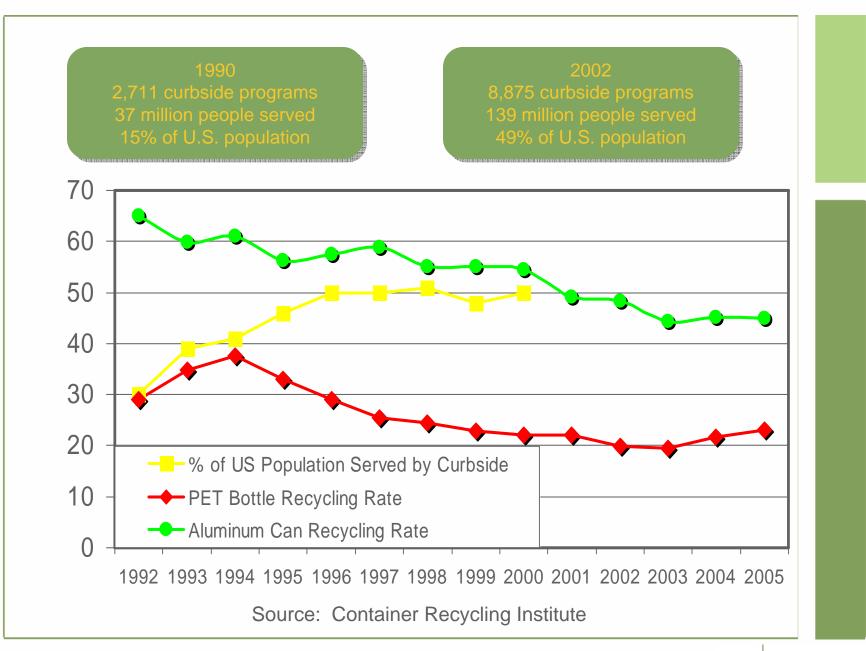
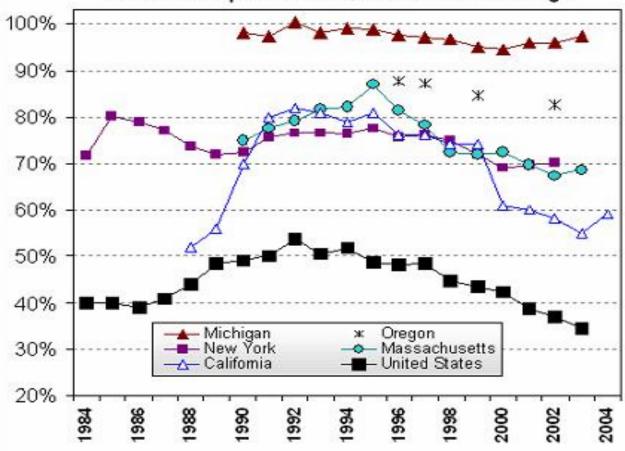

Sustainable Packaging

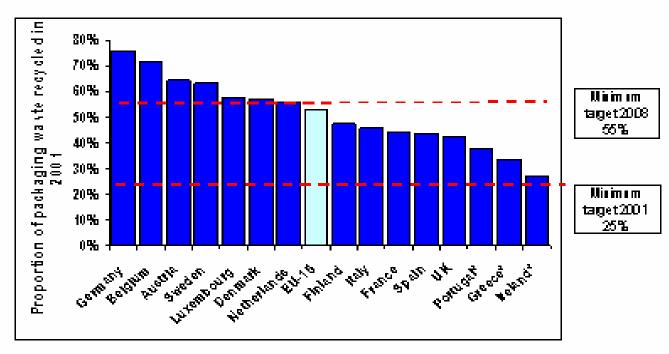
First Steps


Bob Kerr

Pure Strategies, Inc.



World Population Growth


Beverage Container Redemption Rates in Selected Deposit States, vs. the U.S. Average

(Q Container Recycling Institute, 2005
Figure 1.4: Container Recycling Institute. 'States with Deposit Laws." 2006. http://www.bottlebill.org/legislation/usa.htm (16 October 2006)

EU Packaging Requirement for Extended Producer Responsibility

Germany Belgium Austria Sweden Lucembourg Denmark Netherlands EU-15 Finland Italy France Spain UK Portugal* Greece* Ireland* 76% 71% 64% 63% 57% 57% 56% 53% 47% 46% 44% 44% 42% 38% 33% 27%

Remark: * Derogation

"I hate the amount of packaging that food comes wrapped in these days"

Everybody has their packaging problems

10 Strategies for the Journey

- 1. Dematerialize
- 2. Use Recycled Content
- 3. Eliminate toxics
- 4. Review the entire packaging system
- 5. Design for Recyclability
- 6. Use the Plastics Hierarchy
- 7. Minimize where possible
- 8. Design for Reuse
- 9. Design for Compostability
- 10. Eliminate unnecessary packaging

#1: Dematerialize

- ► Less mass = less impact
- ► Less mass = less cost
 - Raw material
 - Transportation
 - Manufacturing (component assembly)
- Examples
 - Private-label: cereal box elimination
 - Unilever: Reduced cap weight by 20% through use of advanced manufacturing technology

#2: Use Recycled Content

- ► Reduce consumption of virgin materials
- ► Reduce energy use
- Create markets for recovery of post consumer wastes

Energy Benefits of Using PCR Materials

Material	Recycled (MJ)	Virgin (MJ)	Energy Savings
Newsprint	31.8	51.2	38%
Corrugated board (unbleached)	27.1	35.5	24%
Steel slab	6.6	34.6	81%
Aluminum ingot	14.1	208	93%
HDPE	18.4	74.9	75%
PET	20.4	76.4	73%
PVC	15	58	75%
Glass	10.7	22.5	52%

Elegantly Simple

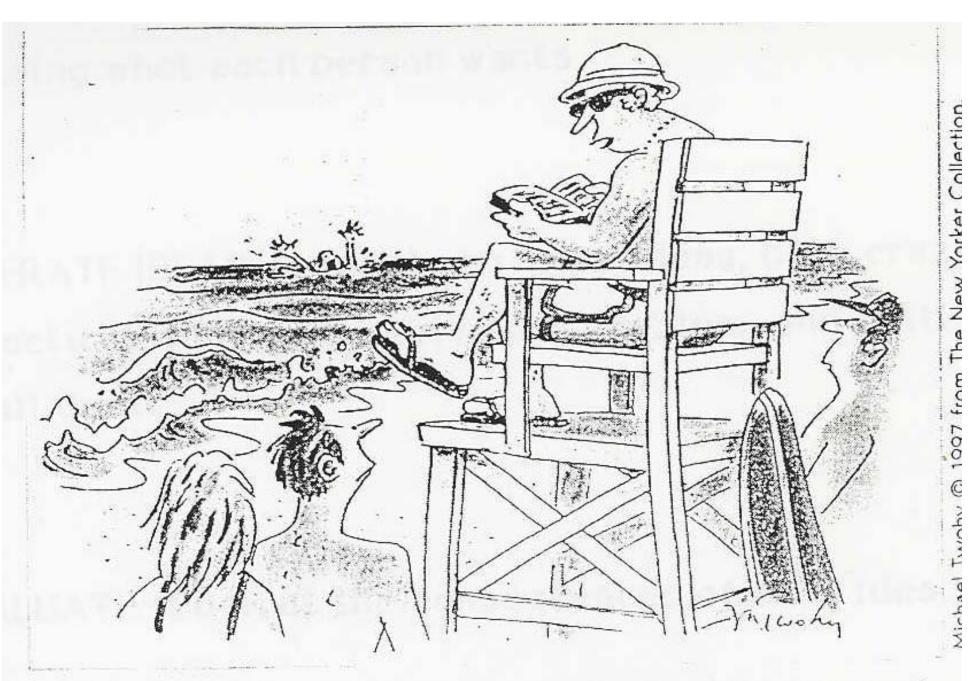
Light Elements

- First 100% PCR -HDPE jar
- Use of PP tool to run PCR – HDPE
- Bottles 100% PCR PET and 80% PCR PE

Brilliant Re-launch AVEDA

- · Light weighted
- 100% PCR

#3: Eliminate Toxics


- ► Heavy metals
 - Cadmium
 - Hexavalent Chromium
 - Lead
 - Mercury
- ► Endocrine Disruptors
 - Certain Phthalates (in PVC)
 - Bisphenol-a (polycarbonate)
- ► Chlorine bleaching (paper, linerboard, corrugated)
 - changing from bleached to unbleached paper or paperboard reduces energy consumption and organo-halide pollution.

#4: Examine the packaging system

- ► The Packaging System:
- Primary (bottle & cap), secondary (corrugated), tertiary materials (stretch wrap)
- ► Energy use & equipment to package product
- ▶ Transportation
- Stonyfield Farm example
 Optimizing the entire product delivery system

"We're encouraging people to become involved in their own rescue."

#5: Design for Recyclability

Simple design choices affect recycling efficiency and product quality

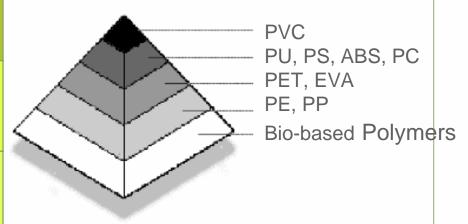
Use of base attachments on PET soda bottles reduces yields 10-20%

	Use	Avoid
Paper	water-based adhesives vegetable based inks aqueous varnishes	UV varnishes thermography plastic laminates
Corrugated	oil-based barriers uncoated top layer	waxed corrugated Coated top layers

Plastic: APR Design Guidelines The Association of Postconsumer Plastic Recyclers

	PET	HDPE	Pigmented HDPE	Polypropylene	PVC
PVC/PET A	PVC/PET Attachments				
	No PVC	No PVC	No PVC	No PVC	No PET
Closures/Clo	Closures/Closure liners Attachments				
Preferred	PP; HDPE & EVA with plastic		HDPE, LDPE or PP; unpigmented or same color as bottle; No liners, no residual rings, no attachments		
Undesirable	PVC and Aluminum; EVA with plastic		Metal closures		
Basecups/Adhesives					
Preferred	No Basecups		N/A	N/A	
If Basecup is used	Water-soluble adhesives or ones dispersible at temperatures between 140° and 180°F		N/A	N/A	
	Un	filled HDPE	or clear PET		

- ►Sleeves & Safety Seals
- ► Labels & Adhesives
- **▶**Direct Printing
- ►Inks & Adhesives
- Layers & Coatings
- ► Non-detaching components


www.plasticsrecycling.org

#6: Use the Plastics Hierarchy

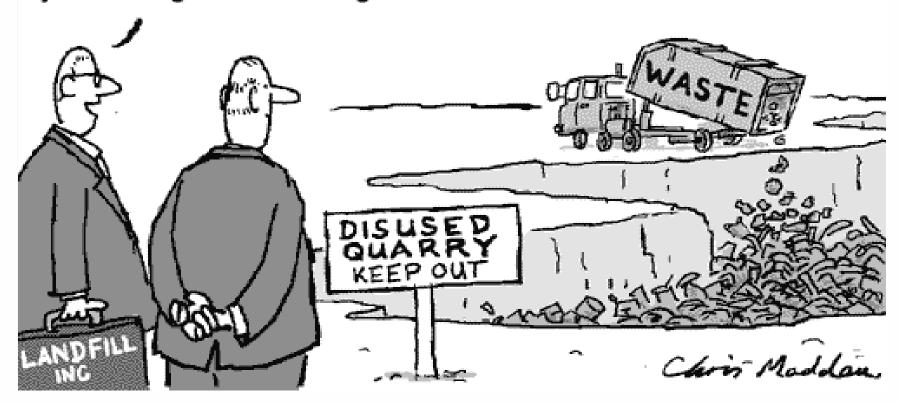
Aveda's Preferred Plastics Hierarchy		
Most Preferred	High Density Polyethylene (HDPE) Low Density Polyethylene (LDPE)	
Acceptable	Polyethylele Terephalate (PET) Ethylene Vinyl Acetate (EVA) Polypropylene (PP)	
Least Preffered	Polyurethane (PS) Acrylonitrile Butandiane Styrene (ABS) Polycarbonates (PC) Acrylic	
Prohibited	Polyvinyl Chloride (PVC)	

Eliminate PS & PVC – they only serve as contaminants to PET

#7: Minimize Where Possible

Strategy	% in total energy
25% recycled HPDE plastic bottle	6
25% consumer recycling	7
Triple-concentrate (3x) in existing container	67
Single strength (1x) product in soft pouch (PET and LDPE laminate)	32
Triple-concentrate (3x) product in soft pouch (PET and LDPE laminate)	77
Triple-concentrate (3x) product in paper gable top carton (paperboard/LDPE)	72

#8: Reusable Packaging


- ▶ 1/3 of soft drink packaging for mineral water and wine in the European Union is refillable.
- ▶ 90% of glass and PET beverage bottles in Denmark, Finland, Germany and Sweden are refilled.

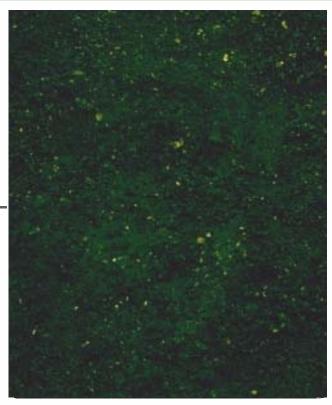
Source: Container Recycling Institute

The original inhabitants of this land had a saying 'Every time you take something from the Earth,
you must give something back.'

Misinterpretation

#9: Design for Compostability

Day

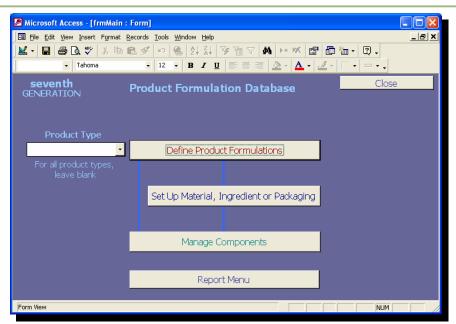


PLA: Requires high temperature and moisture found in municipal compost systems

Meets composting standards: DIN 54900-1; EN 13432; ASTM D 6400, GreenPLA

Biodegradeable packaging tape Bioflex 219-F

#10: Reduce Unnecessary Packaging



Moving Forward

► Know thy packaging

- All packaging materials
- Weights & dimensions
- Supplemental: Inks, attachments
- ► Partner with Packaging Suppliers
- **▶**Near term improvements
 - Eliminate unnecessary packaging
 - Increasing recycled content
 - Eliminating chlorine bleached components
 - Adhesives, inks and finishes to upcycle at the end of life
 - Review APR Design Guidelines with packaging supplier

Forward Moving

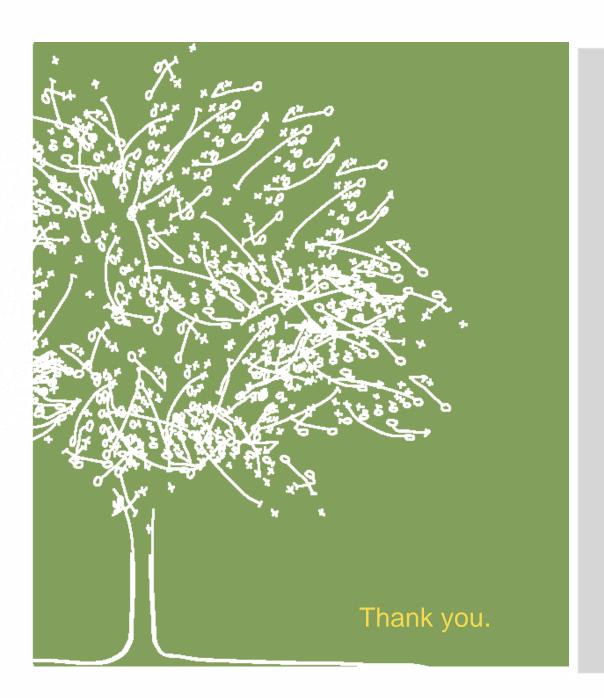
- Long term redesign opportunities
 - New packaging design, bottle molds
 - Product reformulation to concentrate product
 - More sustainable plastic choices

10 Strategies for the Journey

- 1. Dematerialize
- 2. Use Recycled Content
- Eliminate toxics
- 4. Review the entire packaging system
- 5. Design for Recyclability
- 6. Use the Plastics Hierarchy
- 7. Minimize where possible
- 8. Design for Reuse
- 9. Design for Compostability
- 10. Eliminate unnecessary packaging

Resources

- Sustainable Packaging Coalition www.sustainablepackaging.org
- ► Association of Postconsumer Plastic Recyclers <u>www.plasticsrecycling.org</u>
- ►APR Design for Recylability Guidelines http://www.plasticsrecycling.org/technical_resources/desig n_for_recyclability_guidelines/index.asp
- ► Sustainable Packaging Alliance www.cfd.rmit.edu.au/programs/sustainable_products/sustainable_packaging_alliance


"It took Britain half the resources of the planet to achieve its prosperity;

how many planets will a country like India require...?"

Mahatma Gandhi

[when asked if, after independence, India would attain British standards of living]

STRATEGIES

OLUTIONS FOR A SUSTAINABLE FUTURE